Investigation and Comparison of Metal Nanoparticles on Dose Enhancement Effect in Radiotherapy Using Monte Carlo Simulation Method

Authors

  • Ahmadi Ganjeh, Zahra Ionizing and Non-Ionizing Radiation Protection Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Abstract:

Introduction: The main goal of radiation therapy is destroying the tumor so that the surrounded healthy tissues have received the least amount of radiation at the same time. In recent years, the use of nanoparticles has received much attention due to the increasing effects they can have on the deposited dose into the cancer cells. The aim of this study was to investigate the effects of nanoparticles in improving radiotherapy conditions by Monte Carlo simulation. Methods: In this study, the geometry that was considered as the tissue of the human body was designed by Monte Carlo simulation method and distributed nanoparticles such as gold, silver, platinum, etc. into the geometry. Then the source was placed in a coordinate of this geometry and by increasing the photons to this geometry, the Dose Enhancement Factor was calculated. The simulation was performed using MCNP Code. Results: The results showed that platinum nanoparticles have a better performance in increasing the dose rate than other nanoparticles so that for photons with energy of 40 kV, this increase was approximately 2.5 times, also increasing the dose was directly related to increasing the concentration of nanoparticles. Conclusion: Considering the sufficient biocompatibility and the degree of penetration in the target, the use of nanoparticles in radiotherapy is one of the most promising methods to increase the dose delivered to the target. Given that the cell model and the results presented in this work lead to a better understanding of the effects of the distribution of platinum nanoparticles in increasing the dose, these calculations are valuable.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: Measurements and Monte Carlo simulation

Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentrati...

full text

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

full text

Investigating the Effect of Air Cavities of Sinuses on the Radiotherapy Dose Distribution Using Monte Carlo Method

Background: Considering that some vital organs exist in the head and neck region, the treatment of tumors in this area is a crucial task. The existence of air cavities, namely sinuses, disrupt the radiotherapy dose distribution. The study aims to analyze the effect of maxillary, frontal, ethmoid and sphenoid sinuses on radiotherapy dose distribution by Monte Carlo method.Materials and Methods: ...

full text

Effect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method

Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions.Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiothe...

full text

megavoltage dose enhancement of gold nanoparticles for different geometric set-ups: measurements and monte carlo simulation

background: gold nanoparticles (gnps) have been shown as a good radiosensitizer. in combination with radiotherapy, several studies with orthovoltage x-rays have shown considerable dose enhancement effects. this paper reports the dose enhancement factor (def) due to gnps in 18 megavoltage (mv) beams. materials and methods: different geometrical 50-nm gnps configurations at a concentration of 5 m...

full text

Investigation of the dose enhancement effect of spherical bismuth oxide nanoparticles in external beam radiotherapy

Introduction: External radiotherapy is the most common method of radiotherapy which the most important problem associated with is that there is no difference between healthy and tumor tissues in dose absorption. One way to differentiate the dose sensitivity is to use metal-based nanoparticles. Bismuth oxide nanoparticles are good candidates for cancer radiotherapy. In this study, we investigate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 30  issue 1

pages  4494- 4503

publication date 2022-04

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023